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A new expansion form is presented for electronic wave functions. The wave function is a linear combination
of product basis functions, and each product basis function in turn is formally equivalent to a linear combination
of configuration state functions that comprise an underlying linear expansion space. The expansion coefficients
that define the basis functions are nonlinear functions of a smaller number of variables. The expansion form
is appropriate for both ground and excited states and to both closed and open shell molecules. The method
is formulated in terms of spin-eigenfunctions using the graphical unitary group approach (GUGA), and
consequently it does not suffer from spin contamination.

1. Introduction

The graphical unitary group approch (GUGA) of Shavitt1-7

has been used to compute electronic wave functions for
multiconfiguration self-consistent-field (MCSCF)8,9 and con-
figuration interaction4,10(CI) expansions. It forms the underlying
basis of the COLUMBUS Program System,10-12 of which the
main emphasis is the accurate computation of global potential
energy surfaces of ground and excited states. The graphical
representation of the linear expansion space results in an intuitive
approach, in efficient matrix element evaluation, in flexible wave
function expansion spaces, and in efficient wave function
optimization procedures. The entire procedure is based on
expansions in terms of spin-adapted configuration state functions
(CSFs), and consequently, the resulting wave functions do not
suffer from spin contamination, and the optimization process
is not plagued with artificial spin instabilities. The main
disadvantage of these approaches is that large wave function
expansions result in computationally demanding optimization
procedures with large storage requirements. In particular,
MCSCF expansions are limited typically to about 15 valence
orbitals and benchmark full-CI expansions are limited to about
25 orbitals; the largest MR-SDCI expansions that can be
computed are now about 109 CSFs, and the largest full-CI
expansions are now about 1010 CSFs, the limits resulting from
the complications associated with the storage and manipulation
of such large data sets. It would be of great benefit if those
practical limitations could be extended.

In the new approach presented herein, we attempt to keep
all of the advantages of the GUGA approach while eliminating
both the large data sets and the large computational effort of
the current methods. Because the final wave function is
represented as a linear combination ofproduct basis functions,
both ground and excited electronic states may be computed,
and the Ritz variational bounds apply to all of the computed
eigenvalues. The storage of the large sets of CSF expansion
coefficients is eliminated and replaced instead with the storage
of a much smaller number of variational parameters. The
computational effort that scales as the CSF expansion length is

eliminated and replaced with effort that scales only as the
smaller number of variational parameters.

2. Method

We first summarize some of the relevant details of the GUGA
method. In the unitary group approach the CSF expansion terms
are represented as a sequence of integer triples (an, bn, cn), which
form the rows of a Paldus array.13-15 These integers are related
to the number of orbitalsn, the number of electronsNn, and
the spin quantum numberSn of that Paldus array row according
to

In the GUGA approach, each integer triple corresponds to a
node(or Vertex, or distinct row) on aShaVitt graph. Each node
thereby corresponds to anŜ2 spin-eigenfunction with eigenvalue
Sn(Sn + 1) and to a specific number of electronsNn. The
individual orbitals correspond to vertical levels in the graph.
The Shavitt graph is a directed graph with a singletail (source)
node located at a fictitious level 0 corresponding to the physical
vacuum, and a singlehead (sink) at the highest level corre-
sponding to theN andSof interest. The nodes at one level are
connected witharcs (or edgesor steps) to the nodes at the
adjacent levels. There are four possible step numbers that
connect the nodes, denoted by the integerd ) 0, ..., 3. The
changes of the various quantities associated with each of these
steps are summarized in Table 1. Each node in the Shavitt graph
is connected to between one and four nodes at the next higher
level, and to one to four nodes at the next lower level (except
for the tail, which has no lower arcs, and the head, which has
no higher arcs).

Each CSF expansion term corresponds to a walk from the
graph tail to the graph head. This walk touches one node at
each level, and it touches only the single arc at each level that
connects the node below it to the node above it in that walk. A
CSF can thereby be represented by denoting either the set of
nodes in the corresponding walk or by denoting the sequence
of steps in that walk. This latter choice is called thestepVector
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Nn ) 2an + bn

Sn ) bn/2

n ) an + bn + cn (1)
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representation and is especially convenient because it is compact
and it is independent of the (arbitrary) labeling and ordering of
the nodes.

In a typical Shavitt graph an individual node may be touched
by many walks, so it is convenient to organize the graph based
on storage of the nodes; each node is indexed by an integerj
and the storage of the connecting arcs, and other information
discussed below, associated with that node is called adistinct
row table(DRT). Each node (other than the root) is connected
by at least one arc to nodes in the next lower level; consequently,
the total number of arcs in the graph satisfies (Nrow - 1) e Narc

< 4(Nrow - 1). Each CSF may be assigned a contiguous integer
index that may be computed as a summation of the integerarc
weightsthat are associated with the arcs.

We adopt the convention thatjp is the node index of the
bottom of the arc in the walk of interest at levelp, anddp is the
step number associated with the arc. In this way the pair of
indices (d,j) specify an arc. In the following, it is sometimes
convenient to denote a (d,j) pair by a single arc indexµ, and
µ(p) in eq 2 is the arc at levelp in the walk. These arc weights,
along with the total number of walks, can be computed with a
recursive procedure whose effort scales only as the number of
nodes in the Shavitt graph and not as the (usually much larger)
number of walks. From the information stored in the DRT, it is
straightforward to construct the step vector from a given CSF
indexm, or to do the reverse and to determine the integer CSF
indexm from a given step vector; in both cases, the effort scales
only as the number of orbitalsn.

For the Shavitt graphs encountered with typical wave function
expansions (e.g., MCSCF, MR-SDCI, full-CI), it is observed
that the number of nodes is usually a small fraction of the total
number of walks. For example, for full-CI expansions, the
number of walksNcsf is given by1

and the number of nodes (distinct rows) in the corresponding
Shavitt graph is given by

with d ) Min(a,c). Table 2 gives some selected values for full-
CI singlet wave functions withn ) N up to 30 orbitals. For
larger numbers of orbitals the Stirling approximation (ln(n!) ≈
n ln(n) - n + (1/2) ln(2πn)) may be used to estimate the
binomial coefficients

giving, very roughly for largen

It is clear from the above approximation thatNrow , Ncsf

for large n. The Log4(Ncsf) quantity appears in these expres-
sions because for these types of full-CI wave function
expansions, almost all of the nodes are connected to 4 nodes
at the next lower level (however, as we show below, this
is not true for all wave function expansions). Our goal is to
devise, as much as possible, a computational scheme that
depends only onNrow rather than the usually much larger
quantityNcsf.

To achieve this goal, we assign a numericalarc factor to
each of the arcs in a given Shavitt graph. These arc factors will
be denoted individually asRdj where, analogous to theydj

notation of the arc weights given above,j is the index of the
node at the bottom of the arc andd is the step number of the
arc. All of the upper arcs associated with nodej will be denoted
Rj, and the entire set of these arc factors will be denotedR.
The CSF coefficientxm associated with a particular walkm is
defined to be the product of the arc factors in that walk. That
is, in analogy to eq 2

Because one and only one arc factor is associated with
each orbital level in this product, there are always exactlyn arc
factors that contribute to each of the CSF coefficients. The
mapping of the set of arc factors to the vector of CSF
coefficients will be denoted asx ≡ L(R). A product function,
denoted|M〉, is then defined in terms of these CSF coefficients
as

A simple example of this relation is shown in Figure 1
for a 3-orbital, 3-electron, doublet full-CI expansion space.
There are eight CSFs in the expansion, and given a set
of arc factors R, the expansion coefficients for this

TABLE 1: Characterization of Step Numbers

d ∆ad ∆bd ∆cd ∆Nd ∆Sd

0 0 0 1 0 0
1 0 +1 0 1 +1/2
2 1 -1 1 1 -1/2
3 1 0 0 2 0

TABLE 2: Comparison of Nrow and Ncsf for Singlet Full-CI
Wave Function Expansions

n ) N Nrow Ncsf

2 5 3
4 14 20
6 30 175
8 55 1,764

10 91 19,404
12 140 226,512
14 204 2,760,615
16 285 34,763,300
18 385 449,141,836
20 506 5,924,217,936
22 650 79,483,257,308
24 819 1,081,724,803,600
26 1015 14,901,311,070,000
28 1240 207,426,250,094,400
30 1496 2,913,690,606,794,775

n ≈ Log4(Ncsf)

Nrow ≈ 1
24

Log4(Ncsf)
3 (6)

xm ) ∏
p)0

n-1

Rdpjp
) ∏

p)0

n-1

Rµ(p) (7)

|M〉 ) ∑
m)1

Ncsf

xm|m̃〉 (8)

m ) 1 + ∑
p)0

n-1

ydpjp
) 1 + ∑

p)0

n-1

yµ(p) (2)

Ncsf ) b + 1
n + 1(n + 1

a )(n + 1
c ) (3)

Nrow ) (a + 1)(c + 1)(b + 1
2
d + 1) - 1

6
d(d + 1)(d + 2)

(4)

Nrow ) (n + 2)(n + 3)(n + 4)/24

Ncsf ≈ (8π)4
n

n2
(5)
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product function are given by

in which the CSFs are denoted with step-vectors. In this small
8-CSF expansion, there are 15 arc factors and 9 nodes. For larger
expansions of this type, as discussed above, there are typically
many more CSFs than nodes in the graph. However, this
observation leads to the important topics of uniqueness,
redundancy, normalization, and interpretation that we now
address.

Given a set of arc factors, which define a product function
|M〉, an expectation value may be written, for example, for the
Hamiltonian operator, as

Even for the normal situation, in which thexm are considered
as the variational parameters, there is a redundancy in the above
expression because the coefficients may be scaled by an arbitrary
nonzero factorâ without changing the value ofE. Even if the
coefficients are scaled such that the denominator is unity, there
is still the arbitrary choice of sign factorâ ) (1. When|M〉 is
a product function, there is even more ambiguity in the choices

for the arc factorsR. For example, if all the arc factors at a
particular level are scaled by a factorâ, then this affects only
the overall norm and does not change any expectation value.
Different levels could, in principle, be scaled by different scale
factors, and only the overall norm would be affected. Further-
more, consider a situation such as nodej ) 7 in Figure 1. This
node is connected by a single arc withd ) 1 to the level below
it, and it is connected by a single arc withd ) 2 to the level
above it. This pair of arc factors,R1,3 and R2,7, always occur
together, and any scaling of this pair of arc factors of the form
R1,3 r R1,3/â andR2,7 r R2,7â would leave the product (R1,3R2,7)
unchanged and, therefore, would leave also|M〉 unchanged. With
this kind of arbitrariness, given two different product functions
|M〉 and|N〉, defined in terms of two sets of arc factorsRM and
RN, respectively, is it possible to determine if|M〉 ) â|N〉 simply
by examining the individual arc factors? Finally, is there a way
to attach a simple physical or mathematical meaning to the
individual arc factors?

We address all of these issues by introducing astandard form
for the arc factors. Given an arbitrary set of arc factors, it is
possible to transform them into this standard form with the only
significant change to|M〉 being an overall scaling. This standard
form consists of scaling the individual terms in such a way to
achieve overall normalization〈M|M〉 ) 1, and it allows different
sets of arc factors to be compared directly. To achieve this goal,
we consider an arbitrary interior node of a Shavitt graph and
consider all of the arcs that connect this node to the nodes at
the adjacent levels above and below. Nodej ) 5 in Figure 2 is
a representative example. It is clear that an arbitrary scaling of
the lower arc factors by a factor 1/â, and a simultaneous scaling
of the upper arc factors byâ, leave every possible product
(RlowRhigh) unchanged. That is, every walk that passes through
that node will have its CSF coefficient unchanged by that
scaling. The other walks in the expansion space that do not pass
through that node would also be unchanged, the final result
being that |M〉 itself is unchanged by such a scaling. This
allows us to choose a particular scaling factorâ for each
node to enforce, in principle, any scaling convention that we
choose.

The convention that is proposed here is based on the idea of
normalization of lower walkpartial product functions. Each
node of the Shavitt graph is associated with such a partial
product function, and the construction is defined recursively in
the following manner. Referring to Figure 2, assume that
normalized partial product functions have been computed for
the nodesj ) 1...4, and let these functions be denoted|Mj〉 with
normalization〈Mj|Mj〉 ) 1. We then define the partial product

Figure 1. Shavitt graph for a three-electron, three-orbital, doublet full-
CI expansion. The node index is denoted by the circled values, the arc
weight ydj is indicated by the square boxes, and the arc factorRdj is
written next to its corresponding arc.

|M〉 ) ∑
m)1

8

xm|m̃〉

) (R3,1R1,2R0,5)|310〉 + (R3,1R0,2R1,6)|301〉 +

(R1,1R3,3R0,5)|130〉 + (R1,1R2,3R1,6)|121〉 +

(R1,1R1,3R2,7)|112〉 + (R1,1R0,3R3,8)|103〉 +

(R0,1R3,4R1,6)|031〉 + (R0,1R1,4R3,8)|013〉 (9)

E )
〈M|Ĥ|M〉

〈M|M〉
(10)

Figure 2. Arbitrary interior node of a Shavitt graph, labeledj ) 5,
shown with its connections to the nodes at the next lower and the next
higher level. An arbitrary scaling of the lower arc factors by a factor
1/â, and a simultaneous scaling of the upper arc factors byâ, leave
every product (RlowRhigh) unchanged.
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function at nodej ) 5 as

The notation|Mj X d〉 means that a new orbital with step number
d is appended to each of the step vectors in the expanded
representation of the partial product function|Mj〉. We impose
normalization on|M5〉 to give

Given an initial set of arc factors, the scale factorâ may be
chosen to satisfy this normalization condition. The partial
product function of the graph tail at levelp ) 0, corresponding
to the physical vacuum, is normalized by convention. The
conversion of an arbitrary set of arc factorsR to standard form
is outlined in Figure 3. In Figure 3,kd,j are the downward
chaining indices, andl d,j are the upward chaining indices1 that
give the connecting node indices at the lower and higher levels,
respectively. The sign of theâ factor is chosen such that the
lower arc factor with largest magnitude, after scaling, is positive.
The quantity〈M|M〉 is not changed during the above process
for p < n; it is only at the last step, for the head node atp )
n, that the normalization is changed to satisfy the desired〈M|M〉
) 〈Mhead|Mhead〉 ) 1 normalization condition. In the special case
that â ) 0 for some node, the lower arc factors may be set to
an arbitrary set of values and the scaling of the upper arc factors
by â ) 0 will ensure that the product function|M〉 remains
unchanged; by convention, in the standard form the arc factor
of the lowest step number is set to+1 and any remaining arc
factors are set to zero.

After a set of arc factors have been transformed into standard
form, an individual arc factorRdj is seen to have a simple
physical and mathematical interpretation. Namely, it is the
expansion coefficient used to construct the partial wave function
at the nodel d,j according to eq 11. As such, it is a measure of
the relative importance of the partial wave function|Mj〉 within
the partial wave function|Ml d,j〉, and thereby, indirectly through
the higher arc factors, to all of the higher partial wave functions
including ultimately|M〉. If a particular arc factor is large in
magnitude, then it means that that particular orbital occupation
and spin coupling combination are important in forming that
partial wave function, and if that arc factor is small, then it
means that particular combination is not important. This allows,

for example, physical interpretation of the relative importance
of different arc factors within the graph, and of particular
combinations of arc factors within the graph in the same general
way that, for example, an electron density is a measure of the
importance of a particular orbital.

The above arc factor normalization shows that if a nodej
hasηj lower arcs (with 1e ηj e 4), then there are only (ηj -
1) independent degrees of freedom among those arc factors.
This is equivalent to the constrained movement on the surface
of a unit η-sphere with (η - 1) essential variables. When
considering the dependence on the arc factors of expectation
values and other properties, it is often beneficial to cast the
formulation in terms of a minimal number of essential variables.
There are many ways to parametrize the constrained movement
on the surface of aη-sphere. Our choice is based on our
experience with the parametrization of normalized orbital and
CSF coefficients.8,9,16The essential variablesæqj for q ) 1, ...,
(η-1) are associated with nodej. The corresponding arc factors
for that particular node are defined according to

whereµ(:,j) are theηj lower arcs associated with nodej. In
other words, this parametrization is equivalent to starting with
an arbitrary unit vectorêæ ) æj/r that is orthogonal toê1, and
the magnitude ofæj defines an arbitrary rotation of a unit vector
away fromê1 within the (ê1,êæ) plane. The result is constrained
movement on the surface of the unitη-sphere with coordinates
given byRj. This relationship betweenRj andæj is local to node
j of the graph. The relation can also be inverted; given anRj in
standard form, a correspondingæj can be determined, although
due to the cyclic nature of the trigonometric functions, the
inverse mapping fromRj to æj is not unique. Forηj ) 1 the
normalization condition requiresRµ(1,j) ) (1, and, by conven-
tion, we take the positive value.

If each of the nodesj, other than the root, hasηj lower
connecting arcs that are parametrized by (ηj - 1) essential
variables, then it follows that the total number of essential
variables required to characterize an entire set of arc factorsR
is given by the expression

If there are more variables thanNæ given above, then the
representation ofR in standard form in terms of those variables
is either not unique or some of those variables are unnecessary,
and if there are fewer variables than this number, then there
areR sets that cannot be represented. In other words, this number
of variables is both necessary and sufficient to represent an
arbitrary R in standard form, and, in turn, thatR in standard
form is sufficiently flexible to represent (to within a sign) an
arbitrary normalized product function.

We note in passing that other arc factor normalization
conventions are also possible. For example, if a reference walk
(with a nonzero coefficient) is chosen, then a scale factor for
each level may be chosen such that the arcs that are touched by
the reference walk all have arc factors of+1. The end result
would be that the CSF coefficient for that reference walk would

Figure 3. Outline of the procedure to convert an arbitrary set of arc
factorsR to standard form.

|M5〉 ) R0,1|M1 X 0〉 + R1,2|M2 X 1〉 +
R2,3|M3 X 2〉 + R3,4|M4 X 3〉 (11)

1 ) 〈M5|M5〉

) R0,1
2 〈M1 X 0|M1 X 0〉 + R1,2

2 〈M2 X 1|M2 X 1〉 +

R2,3
2 〈M3 X 2|M3 X 2〉 + R3,4

2 〈M4 X 3|M4 X 3〉

) R0,1
2 + R1,2

2 + R2,3
2 + R3,4

2 (12)

r ) |æj|
Rµ(1,j) ) cos(r)

Rµ(q+1,j) ) sin(r)æq,j /r for q ) 1, ..., (ηj - 1) (13)

Næ ) ∑
j(*root)

Nrow

(ηj - 1) ) ( ∑
j(*root)

Nrow

ηj) - (Nrow - 1)

) Narc - (Nrow - 1) (14)
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have the valuexm ) +1, with the other CSF coefficients being
scaled accordingly. This is equivalent to the traditional inter-
mediate normalization convention. Another reasonable conven-
tion would be to choose scaling factors for each node such that
the lower arc factor with largest magnitude always has a value
of +1 after scaling. This is a slightly different way to achieve
an intermediate normalization in which the CSF coefficient of
largest magnitude after scaling would have a value of+1. Yet
another reasonable convention would be to start at the head of
the Shavitt graph and proceed down level by level, and scale
the upper arc factors for each node to maintain normalization
of the upper walk partial product functions rather than the lower
walk partial product functions. It is possible that these conven-
tions, or other similar conventions, would have particular
advantages in special situations. In such a situation, it is very
easy to take an arbitrary set of arc factors and to transform them
to satisfy the desired normalization convention without changing
the resulting product function|M〉 other than by an overall
scaling.

Referring back to the DRT in Figure 1, we note that the
number of essential variables isNæ ) 15 - (9 - 1) ) 7. For
an 8-CSF expansion space, there are indeed 7 degrees of
freedom for a normalized wave function, which means that, for
this small example, a single product function|M〉 has the same
flexibility as the linear expansion space. It may be proven by
induction that for an arbitrary Shavitt graphNæ < Ncsf; that is,
there are always fewer essential variables than there are total
walks in a Shavitt graph. In some small expansions, such as
the graph in Figure 1,Næ takes its maximum value ofNæ )
(Ncsf - 1), and in these cases an arbitrary normalized wave
function within the space may be represented by a single product
function.

In general, however, and for most expansions of interest, a
single product function is not sufficiently flexible to reproduce
an arbitrary vector within the underlying linear expansion space.
Consequently, we write a more general linear combination wave
function expansion as

in which theNR product functions|M〉 form an expansion basis.
The optimization of the linear expansion coefficients to mini-
mize the energy expectation value takes the form of a general-
ized symmetric eigenvalue equation

with HMN ) 〈M|Ĥ|N〉 and SMN ) 〈M|N〉. In the present work
we will discuss in detail only the computation of the metric
matrix S. The detailed discussion of the computation of the
Hamiltonian matrixH will be deferred to a future publication.
Through the Ritz variational principle, the lowest eigenvalues
computed from the product function basis in eq 16 are upper
bounds to the corresponding eigenvalues of the underlying linear
CSF expansion space, which in turn are upper bounds to the
exact full-CI eigenvalues. Consequently, the general approach
outlined here is applicable to both ground and excited electronic
states.

If xM ) L(RM) and xN ) L(RN) are the vectors of CSF
coefficients of the product functions defined byRM andRN, then
SMN ) xM‚xN is the scalar product between the two product basis
functions. One way to compute this quantity would be to
compute the vectorsxM andxN explicitly, and to compute the
scalar products directly from these expanded vectors. The effort

for such an approach would scale linearly withNcsf and with
the total number of distinct elements of the matrixS; because
S is symmetric, this effort would be proportional toNcsfNR(NR+1).
Depending on the details of the implementation, the storage
requirements with this approach might include also the (NcsfNR)
elements ofX ) [x1|x2|...xNR]. Our actual approach requires
both less computational effort and less storage for large
expansions.

We approach the solution to this task recursively. Suppose
that we have available the overlaps of the partial product
functions for two expansion terms, labeled|Mj〉 and|Nj〉 for all
nodesj at some level, and consider computing the overlaps of
the partial product functions at the next higher level. Referring
to Figure 2, suppose that we have the quantitiesγj

MN ) 〈Mj|Nj〉
for j ) 1...4. Using

it follows that

This procedure may be applied to each of the nodes at the
higher level. The overlap computation procedure begins
at the tail of the graph with the assignment of the vacuum
overlapγtail

MN ) 〈vac|vac〉 ) 1 and proceeds upward level by
level, until the graph head is reached, at which time we have

which is the quantity of interest. Note that, by definition and
by construction,γj

MN ) γj
NM for all nodesj in the Shavitt graph.

For each node in the Shavitt graph, there are two floating point
multiplications and one addition for each connecting lower arc,
so the effort for this procedure scales only with the number of
nodes, not as the number of walks. The storage requirements
consist of theγMN array, of lengthNrow, and the resultingS
array. (This assumes the entireγ array is kept; only storage of
the rows for two levels at a time is strictly necessary for the
procedure.) Some minor efficiency can be gained by computing
the γMN arrays for a range ofM andN values simultaneously.
In this case, the storage scales as the product ofNrow and the
number ofSMN values that are being computed, which might
be anywhere between 1 andNR(NR + 1)/2. This procedure is
outlined in Figure 4.

We now characterize product basis functions and wave
functions on the basis of the arc factors and partial
product overlaps. Using the lower walk partial product

|ψ〉 ) ∑
M

NR

cM|M〉 (15)

Hc ) ScE (16)

|M5〉 ) R0,1
M |M1 X 0〉 + R1,2

M |M2 X 1〉 +

R2,3
M |M3 X 2〉 + R3,4

M |M4 X 3〉

|N5〉 ) R0,1
N |N1 X 0〉 + R1,2

N |N2 X 1〉 +

R2,3
N |N3 X 2〉 + R3,4

N |N4 X 3〉 (17)

γ5
MN ) 〈M5|N5〉

) R0,1
M R0,1

N 〈M1 X 0|N1 X 0〉 +

R1,2
M R1,2

N 〈M2 X 1|N2 X 1〉 +

R2,3
M R2,3

N 〈M3 X 2|N3 X 2〉 +

R3,4
M R3,4

N 〈M4 X 3|N4 X 3〉

) R0,1
M R0,1

N γ1
MN + R1,2

M R1,2
N γ2

MN +

R2,3
M R2,3

N γ3
MN + R3,4

M R3,4
N γ4

MN (18)

SMN ) xM‚xN ) 〈M|N〉 ) γhead
MN (19)
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functions |Mj〉 and the analogous upper walk partial
product functions|Mh j〉, defined with the arcs and corre-
sponding arc factors from the nodej up to the head of the
graph, the product function contribution from a particular node
j is |Mj X Mh j〉. A product function may be written as a
summation of these contributions from all of the nodes at a
particular levelp.

A transition node densityfor nodej may be defined as

For M ) N, the node densityDj
MM, which is a nonnegative

quantity, gives a measure of the overall importance of that
particular node to the product function|M〉. The procedure
described above for the computation of theγMN array begins at
the graph tail and proceeds upward, one level at a time, to the
graph head. In an entirely analogous manner, the arrayγjMN with
elementsγj j

MN ) 〈Mh j|Nh j〉 may be computed recursively from the
head of the Shavitt graph down to a particular node. Referring
to Figure 2 and eq 18, we define for example

The valueγjhead
MN ) 1 is assigned for the head of the graph, and

then the lowerγj j
MN elements are computed, level by level, until

the graph tail is reached. At this point,

in analogy with eq 19. The overlap of two product func-
tions may be written in terms of these transition node densities
as

Equations 19 and 23 are special cases of this more general
expression.

In an analogous manner, a particular arc factor contributes
to a product function according to

and atransition arc densitymay be defined as

An overlap of two product functions may be written in terms
of transition arc densities as

For M ) N, Dµ
MM, which is a nonnegative quantity, gives a

measure of the overall importance of that particular arc to the
product function|M〉.

Using eq 15, the wave function overlap may be written in
terms of node densities at some levelp as

and it may be written in terms of arc densities and individual
arc factors as

In the above expressionsDj
ψ is thewaVe function node density

for node j andDµ
ψ is thewaVe function arc densityfor arc µ.

These quantities allow product basis functions and wave
functions to be compared and characterized in terms of nodes
and arcs of the Shavitt graph.

Another property of interest for electronic wave functions is
the orbital occupation (i.e., a diagonal element of the one-particle
density matrix), which may be computed for normalized wave
functions as

where Êpp is a weight generator of the unitary group.1,2,9,12

Figure 4. Outline of the efficient computation ofSMN ) 〈M|N〉.
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Substitution using eq 25 in terms of the arcs at levelp gives

The∆Nd value is the occupation of the arc as given in Table 1.
In this manner, the computation of the orbital occupations may
be performed with an effort that depends only onNR andNrow.
The expression for the off-diagonal density matrix elementsDpq

is more complicated and will be examined in more detail in a
later publication. However, the computation of these elements
follows the same general approach as above. Namely, the
explicit construction and storage of the CSF vectorsxM is
avoided, and as much effort as possible is cast into the form of
recursive procedures that scale asNrow rather thanNcsf.

We do not consider in detail here the analogous computation
of the matrixH. We note here only that the efficientH matrix
construction follows the same general guidelines as those used
to constructS, the orbital occupations, and the node and arc
densities. Namely, the explicit construction and storage of the
CSF vectorsxM is avoided, and as much effort as possible is
cast into the form of recursive procedures that scale asNrow

rather thanNcsf.
We have not discussed the use of point group symmetry in

the above formulation. We have considered two possible
approaches. One is to ignore point group symmetry entirely. In
this case a product wave function would, in general, contain
mixtures of wave functions corresponding to different irreducible
representations (irreps), and the expectation values will consist
of averages over these irreps. That is, in general, a product
function would have symmetry contamination. Presumably, the
linear combination of several product functions would then allow
the desired wave function and the desired expectation value to
emerge. The other possibility, which is the one we have chosen
for the results presented in this paper, is based on symmetry-
dependent arc weights.17 This approach, which is used by the
GUGA codes in COLUMBUS,10,11allows the walks belonging
to each separate irrep at each node to be identified and indexed
separately. In particular, we define at each nodej and for all
irrepsΓ a set of partial product functions denoted|Mj

Γ〉 and we
compute, for example, the corresponding overlapsγj

MN,Γ. Con-
sequently, the CSF expansions with this approach all correspond
to the single irrep (or, in the case of state averaging, to the
specific set of irreps) of interest, and the expectation values will
have no unwanted symmetry contamination. Given this choice
of symmetry treatment, there are two possibilities for the arc
weights. Either a single arc factor could be associated with each
arc and used for walks corresponding to all irreps, or separate
arc factors could be associated with each symmetry version of
each arc. The latter choice would result in more flexibility in
the product function but at the cost of more arc factors. In the
present work, we have chosen the former simpler approach. Our
actual implementation is only slightly more complicated than
the simple treatment presented above, which ignores point group
symmetry. The other possible options for treating point group
symmetry will be examined in more detail in the future.

Given a product function|M〉, it might be useful to character-
ize it qualitatively by examining a few of the CSF coefficients
of largest magnitude. One way to do this would be to compute
the CSF vectorx and to sort the elements. Using an efficient
sort procedure, the effort for this would scale betweenNcsf and
Ncsf Log(Ncsf) depending on how many coefficients are computed
and sorted. A more efficient procedure results from the
observation that the coefficients of largest magnitude within a
partial product function|Mj〉 may be determined by examining
just the coefficients of largest magnitude of the partial product
functions of the lower connecting nodes. This suggests a
recursive procedure to extract the largest coefficients from
|Mhead〉. For example, if the largestQ coefficients are required,
then the overall effort for this recursive procedure scales as the
productQNrow, eliminating all factors related toNcsf. For Q ,
Ncsf, this is much more efficient than thex-construction
approach.

It is possible to represent electronic wave functions in terms
of primitive Slater determinants instead of spin-eigenfunctions,
and the spin-orbital occupations of those Slater determinants
can be represented efficiently using graphical approaches18

similar to GUGA. Product wave functions may be formulated
in terms of arc factors in these graphical representations in a
manner entirely analogous to the method described above.
Unless additional constraints of some kind are imposed on the
arc factors, such product functions in general would not beŜ2

spin-eigenfunctions. However, such product functions would
have more flexibility (i.e., more arc factors within each product
function) than those presented in the present work, and it is not
clear whether that additional flexibility would compensate in a
practical way for the disadvantages associated with the spin
contamination.

3. Results and Dicussion

We first discuss a few general features of the product
functions described in the previous section. We note that if all
of the arc factorsRdj are set to zero except those touched by a
particular walkm, then we have the identity|M〉 ) |m̃〉 where
|m̃〉 is a primitive expansion CSF. The form of the product
function is therefore capable of representing any individual CSF
in the expansion space, regardless of its excitation level relative
to some reference CSF.

In the limit that NR ) Ncsf, with |M〉 ) |m̃〉 for all m, we
would have an orthonormal product function basis with full rank.
In other words, the use of the product basis rather than the
primitive CSF basis represents no inherent formal limitation or
approximation relative to the underlying linear expansion space.
Of course, the truncated product function bases that will be used
in practice for large wave function expansions will not have
full rank. The remaining question is how many expansion terms
NR will be required to represent with sufficient accuracy the
Hamiltonian eigenvectors of chemical interest. This is discussed
below.

Consider next the standard form for a product function based
on the PPMC expansion space.9,19 A Shavitt graph for a six-
orbital PPMC expansion space is shown in Figure 5. In a PPMC
expansion, the orbitals are grouped into pairs, and occu-
pation restrictions are imposed such that exactly two elec-
trons occupy each of the orbital pairs. Furthermore, no
open-shell CSFs are included, so each orbital is either empty
or doubly occupied in each of the expansion CSFs. As dis-
cussed elsewhere,9 such a wave function expansion form
allows both single and multiple chemical bonds to be broken
without spurious charge contamination. With these restric-

Dpp ) ∑
µ

(in Levelp)

∆Ndµ∑
M,N

cMcN Rµ
M Rµ
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tions, there are two arcs at each orbital level, and the two nodes
in each of the odd levels have only a single lower connecting
arc each, whereas the single node at each of the even orbital
levels has two lower connecting arcs. For the odd-level nodes
the lower arc factors areRdj ) 1; that is, they contribute no
essential variables. For each even-level node, the two lower arc
factors are determined by a single essential variable. The unit
two-sphere parametrization discussed in the previous section
reduces to the simple form

These arc factors are shown explicitly in Figure 5. The linear
expansion space for the PPMC wave function in general has
dimensionNcsf ) 2n/2. It is easy to verify that the product
function may be written in the step-vector form

or in first-quantization form using the antisymmetrized product
of geminals

in which the orbitals in pairk are denotedøk andøk*. This is
the normalized form of a nonlinear pp-GVB wave function.19

For this particular type of Shavitt graph, corresponding to PPMC
expansions, the product function based on that same Shavitt
graph is exactly equivalent to the corresponding nonlinear pp-
GVB wave function. The product functions for more general
Shavitt graphs (e.g., those that have the above nodes and arcs
as a subset) have the capability to represent pp-GVB wave

functions by setting the additional arc factors to zero. For a
molecule that dissociates into a set of noninteracting, two-
electron, two-orbital, singlet fragments, the nonlinear pp-GVB
wave function reproduces the corresponding exact full-CI wave
function. Consequently, a single product function that is based
on a Shavitt graph that contains the PPMC Shavitt graph as a
subgraph also has this capability.

If the fragments of such a dissociation are not simple two-
electron subunits (or other special cases such as discussed above
for Figure 1), then in general a single product function will not
be equivalent to the full-CI wave function. Assume that all of
the orbitals associated with these individual singlet fragments
are grouped together in the Shavitt graph, and that there are no
additional spin or occupation restrictions that would prevent the
molecule from dissociating properly into these fragments. In
this case the product function for the entire molecule can be
written as products of the fragment functions, the energy
expectation value will be the sum of the energies of the
fragments, and an important size-consistency property will be
satisfied. This property also holds for some mixtures of singlet
and nonsinglet fragments. Further work is necessary to fully
understand this feature of the product functions described in
this work.

We next turn to the question of accuracy of the linear
combination wave functions with respect to product basis
dimensionNR. At present, we do not have the capability to
optimize the linear coefficientscM in eq 15 and the nonlinear
arc factorsRM directly to minimize the energy expectation value.
We do, however, have the capability to compute a Hamiltonian
eigenvectorvexact independently and, given that vector, to vary
the coefficientscM and arc parametersRM to minimize the error
σ2 ) |v - vexact|2 . This is a somewhat simpler task than direct
energy-based optimization, yet it still can answer the immediate
questions about accuracy and convergence with respect toNR.
The details of this optimization process are given in the
Appendix. Much of the technology presented in the Appendix
will also apply to the computation and optimization of the energy
expectation value. Our optimization approach is based on the
efficient computation of the metricSusing the recursive method
discussed in section 2, and on the efficient computation of the
quantitiesz ) XTvexact, along with the analytic derivatives of
these quantities with respect to the essential variablesæ. We
have computed theσ2 error for a representative set of Hamil-
tonian eigenvectors. The molecules and their wave function
expansions are summarized in Table 3. We have used a variety
of optimization approaches including both those that require
gradients and those that do not. Our results presented below
are computed with the CG_DESCENT() procedure of Hager
and Zhang,20 which is a conjugate gradient optimization
procedure with line searches that does require gradients.

The first wave function is a 6-orbital, 6-electron, CASSCF
expansion for the N2 molecule usingD2h point group symmetry.
There are 175 CSFs total in the expansion space, 32 of which
belong to the A1g irrep of the ground state. We examine two
bond distances for this molecule, one atRe ()2.074a0) and one
at a stretched bond distance ofR ) 4.0a0. At Re the largest
CSF coefficient is 0.9856, whereas at the stretched distance the
largest CSF coefficient is 0.6334 meaning that the corresponding
CSF constitutes only about 40% of the wave function. The
product basis functions were optimized in two different ways.
In the sequential approach, each product function is added to
the basis, optimized to minimizeσ2, and then those variables
are frozen as the next product function is added. Each optimiza-
tion consists of optimizing only theæM for M ) NR variables

Figure 5. Shavitt graph and arc factors in standard form shown for a
six-orbital PPMC expansion space. The product function for this graph
is equivalent to a nonlinear pp-GVB wave function.

R0 ) cos(æ)
R3 ) sin(æ) } for lower arcs in even levels (32)

|{cos(æ1)30 + sin(æ1)03} X {cos(æ2)30 +
sin(æ2)03} X ‚‚‚ X {cos(æn/2)30 + sin(æn/2)03}〉 )

|G1 X G2 X ‚‚‚ X Gn/2〉 (33)
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and thec vector. This is analogous to the way that subspace
bases are expanded in Ritz subspace eigenvalue methods such
as the Davidson and Lanczos methods. The second optimization
approach consists of optimizing all of theæM variables forM
) 1, ..., NR along withc at each step. For a givenNR, this is
computationally more demanding than the sequential optimiza-
tion approach, but as seen in Figure 6 it converges much faster.
For theRe calculation, the full optimization approach converges
to σ2 < 10-7 with NR ) 3 for the full optimization, whereasNR
) 10 product functions are required to achieve that accuracy
with sequential optimization. In comparing theRe with the R
) 4 calculation with full optimization, it is seen that theRe

error is less than theR ) 4 error forNR ) 1 andNR ) 2; both
the Re and R ) 4 errors areσ2 < 10-10 for NR ) 3. This
calculation is too small to reliably measure the time required
to compute the gradient,g̃rM ) dσ2(æ)/dær

M, with either a finite
difference approach or the analytic approach described in the
Appendix.

The next row of Table 3 corresponds to a six-pair (12-orbital,
12-electron) RCI-GVB wave function expansion for the ground
state of the ethylene molecule, C2H4. This expansion has the
same orbital pair occupation restrictions as the PPMC expansion,
but all possible open-shell CSFs and all possible spin couplings

are included in the expansion space.9 Although the PPMC
expansion is sufficiently flexible to eliminate any spurious ionic
contamination during any dissociation process (e.g., to the
fragments H, C2H3, CH2, CCH2, etc.), it cannot, in general,
dissociate to fragments that are the correct spin-eigenfunctions.
The more flexible RCI-GVB expansion on the other hand does
dissociate to spin-eigenfunction fragments and includes also the
most important interpair correlation19 contributions. The product
function optimization is again performed in both ways, with
sequential optimization and with full optimization. As seen in
Figure 6, the error with full optimization is significantly less
than the error with sequential optimization. In the full optimiza-
tion case,NR ) 4 product functions are required to achieveσ2

< 10-3, andNR ) 10 are required to achieveσ2 < 10-4. The
error decreases reasonably well for up toNR ) 5, and then it
slows; it is not clear why this occurs, or if it is simply an
optimization artifact of some kind. The sequential optimization
requiresNR ) 10 to achieveσ2 < 10-3. This calculation is too
small to reliably measure the time required to compute an
analytic gradient, but a finite difference gradient requires about
0.11 s on a 2.8 GHz P4 computer.

The third molecule in Table 3 is a 10-orbital, 12-electron,
CASSCF inC2V symmetry for the formaldehyde molecule. With

TABLE 3: Wave Function Summary

wave function Nrow Narc Næ Ncsf Ncsf
Γ

66 N2 in D2h 30 68 39 175 32+ 20 + 20 + 20 + 23 + 20 + 20 + 20
222222222222 C2H4 in Cs 52 90 39 3012 3012
1012 H2CO inC2V 85 230 146 13860 3644+ 3384+ 3496+ 3336
1218 O3 in C2V 90 236 147 15730 4067+ 3858+ 3962+ 3843
SD from3644 H2O in Cs 105 226 122 40539 20465+ 20074

Figure 6. Eigenvector error as a function of product basis dimensionNR for some representative wave function expansions.
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full optimization, NR ) 5 product functions are required to
achieveσ2 < 10-3, andNR ) 14 are required to achieveσ2 <
10-4. The error decreases reasonably well for up toNR ) 7,
and then it slows. This calculation is too small to reliably
measure the time required to compute an analytic gradient, but
a finite difference gradient forNR ) 1 requires about 0.48 s.

The fourth molecule in Table 3 is a 12-orbital, 18-electron,
CASSCF inC2V symmetry for the ozone molecule. With full
optimization,NR ) 7 product functions are required to achieve
σ2 < 10-3, and convergence toσ2 < 10-4 is not achieved by
NR ) 16. The error decreases reasonably well for up to about
NR ) 9, and then it slows. The sequential optimization does
not achieve convergence to evenσ2 < 10-3 by NR ) 16. This
calculation is too small to reliably measure the time required
to compute an analytic gradient, but a finite difference gradient
requires about 0.57 s.

The fifth molecule in Table 3 is a single- and double-
excitation CI from the 4-orbital, 4-electron, CASSCF inC2V
symmetry for the water molecule using a standard cc-pVDZ
orbital basis set. With full optimization,NR ) 7 product
functions are required to achieveσ2 < 10-2, and convergence
to σ2 < 10-3 is not achieved even byNR ) 16. The error
decrease stalls several times along the way. Convergence of
the conjugate gradient procedure was particularly problematic
for this calculation. The analytic gradient for this calculation
takes about 0.0001 s, whereas a finite difference gradient for
NR ) 1 requires about 1.48 s on a 2.8 GHz P4 computer. We
see that there is about a 104 ratio difference in efficiency when
computing analytic gradients using the procedure outlined in
the Appendix. The conjugate gradient optimization for this
problem requires between 1.5× 104 and 2.0× 106 function
and gradient evaluations, depending onNR; thus this calculation
would not have been practical without the analytic gradient
procedure described in the Appendix.

The overall efficiency of the evaluations ofσ2 and of the
analytic gradientsg̃rM ) dσ2(æ)/dær

M is encouraging. Much of
the technology involved in this process will be used eventually
in the evaluation ofH matrix elements and in the direct energy-
based optimization ofc andæ. In the current calculations it is
necessary to have several vectors of lengthNcsf for debugging
and development purposes. Eventually all reference to any
vectors of lengthNcsf will be removed from the procedure, and
much larger expansions can be examined. It is also encouraging
that for the sample calculations so far, it appears that typically
NR < ∼20 will be sufficient to represent wave functions to
chemical accuracy using a full-optimization approach. The
sequential-optimization approach converges slower than the full-
optimization approach. This suggests that Davidson-like or
Lanczos-like approaches to build the product function subspaces
may not be optimal. The water molecule calculation exhibits
several kinds of convergence problems, both with respect toσ2

as a function ofNR and during the low-level conjugate gradient
optimization steps. At this point we are hopeful that these
convergence problems can be solved. It is also observed that if
the numerical optimization procedure is started with different
initial guesses foræ, the NR ) 1 solution will sometimes
converge to different product functions; in all of these cases,
theNR g 2 full-optimization solutions are the same regardless
of the initial guess. This suggests that, at least for some
situations, there are local minima encountered during the
convergence trajectory that thwarts convergence to the desired
global minimum error solution. It remains to be seen if this
applies also to the direct energy-based optimization ofæ.

4. Conclusions

A new expansion form has been described for electronic wave
functions that is based on the GUGA method of Shavitt. The
wave function is a linear combination of product basis functions,
and each product basis function in turn is formally equivalent
to a linear combination of configuration state functions that
comprise an underlying linear expansion space. The CSF
expansion coefficients that define the basis functions are
nonlinear functions of a set of arc factorsRM, and the arc factors
themselves may be represented in terms of a smaller number
of essential variablesæM. A standard form has been defined
for the arc factors that allows for an intuitive physical interpreta-
tion, and it allows different wave functions to be compared by
examining the individual arc factors. Node densities and arc
densities have been defined that allow the individual product
functions and the resulting wave functions to be compared,
analyzed, and characterized in terms of the nodes and arcs of
the Shavitt graph. Preliminary calculations suggest thatNR <
∼20 basis functions are sufficient to approximate typical
Hamiltonian eigenvectors. The method described here is ap-
propriate for both ground and excited states and to both closed
and open shell molecules. In some cases, the method described
here will be size-consistent with respect to the dissociation of
molecules into fragments. There are many computations de-
scribed in this work (such as basis function overlaps, orbital
occupations, node densities, arc densities, and the determination
of the largest CSF coefficient, or of the largest few coefficients)
that may be cast directly and efficiently in terms of the arc
factors and that do not require the explicit computation and
storage of the CSF expansion vector.
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Appendix

In this Appendix, we show the details of the computation
and optimization of the quantity

with

NR is the number of product function expansion terms,xM≡
x(RM) ) L(RM) is the linear representation of a product basis
function defined by theMth set of arc factorsRM, andcM are
the subspace expansion coefficients. We assume that the
expansion vectorsX(R) are linearly independent. The quantity
σ2(R,c) therefore depends on the linear expansion coefficients
cM and on the nonlinear arc factorsR ≡ {Rµ

M; µ ) 1, ...,Narc, M
) 1, ..., NR}. We use the indexµ as a shorthand for the
combination of the step and node index (d, j) of an individual
arc in the Shavitt graph. The goal is to minimize the quantity
σ2(R,c) with respect to the linear and nonlinear parameters. The
reference vectorvref is assumed to be fixed throughout this

σ2(R,c) ) |v - vref|2 (35)

v ) ∑
M)1

NR

xMcM ) Xc (36)
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optimization procedure, and in most cases it will be normalized,
|vref| ) 1, but the equations in this section will accommodate
the general case.

The first task we examine is the optimization of the linear
coefficientscM for a given set of vectorsX. To this end, we
write

with

Differentiation ofσ2(R,c) with respect to a coefficientcK, setting
the result to zero, and solving for the vectorc give the unique
optimal linear expansion coefficients.

Because this relation holds for any set of linearly independent
expansion vectorsX(R), it defines the dependence ofcopt on
the nonlinear parametersR. For these optimal linear coefficients,
the following relations hold:

We note in passing that ifθ is the angle between the vectorsv
andvref, then cos(θ) ) |v|/|vref| and sin2(θ) ) σ2(R;copt)/|vref|2.
This gives a geometrical picture of the optimization in terms
of minimization of the angleθ.

We next address the minimization ofσ2(R) ≡ σ2(R;copt) with
respect to the nonlinear parametersR. There is no closed-form
solution to this problem, as there is for the linear coefficients
copt, so the arc factors must be optimized numerically. We seek
valuesRopt that satisfy the local condition

We use a numerical approach to this optimization problem that
requires function evaluations and gradient evaluations at
arbitrary values of the parametersR. For this purpose, it is
necessary to compute efficiently the function value,σ2(R), along
with the quantities dσ2(R)/dRµ

M for all of the arcsµ and product
basis functionsM. We outline below our approach to evaluate
these quantities efficiently.

Computation of σ2(r). We first examine the computation
of the quantityσ2(R). According to eq 42, the vectorz and the
matrix S are required. The vectorz is computed as outlined in
Figure 7. Each individual walk is generated on the Shavitt graph
using a recursive tree-search algorithm (which we implement
using a stack). As the walk is generated, the partial products of
the Rµ

M arc factors are computed and stored in a stack indexed
by the orbital level. As the tree-search algorithm reaches the
graph head for each complete walk, the corresponding element

of the vectorxM is available. With this approach, the effort per
walk to compute a CSF coefficient decreases from a constantn
down to an average value of about Log4(n) for large expansions.
This is because once one walk has been generated, much of the
effort involved in computing the arc factor products for the next
walk reuses the existing stack information. On the other hand,
there is little additional overhead for using the tree-search
algorithm to generate the walks even in the worst case situations
in which most of the stack elements must be regenerated for
each walk.

Once the linear expansion coefficientsxm
M are available for

walk m, they are then multiplied by the corresponding element
of vref and accumulated into thezM element of the vectorz.
Some minor efficiency can be gained by computing the products
corresponding to severalM values simultaneously. The overall
computational effort scales roughly as the productNcsfNR
Log4(n) (for large wave function expansions) because of the
use of the recursive algorithm to generate the walks. The total
memory required for this step consists of storage of the vector
vref, and storage of the stacks involved with the walk generation
and the arc factor products. For large expansions, or in a parallel
environment,vref can be split into segments of arbitrary size,
and the procedure can be applied separately to each seg-
ment independently and resultz can be globally summed at
the end. Storage of the fully expanded, linearized expansion
vectorsX is not necessary. Because the elements ofvref are
assumed to be independent quantities, it is difficult to imagine
how the effort proportional toNcsf could be eliminated from
this step.

The computation ofS has already been discussed in
section 2; this step does not require any effort proportional to
Ncsf. With the arraysS and z available, The quantityσ2(R)
can be computed in the straightforward manner: (1) solve
the linear equationScopt ) z, and then (2) computeσ2(R) )
|vref|2 - zTcopt.

Computation of dσ2(r)/drn
P. We now focus on the compu-

tation of the gradients that are used for the optimization process.
From eq 42, two separate contributions to the gradient are
required.

For brevity, we use the shorthand notationA′ to denote dA/dRν
P

for some arbitrary quantityA. Differentiating the relationSS-1

σ2(R,c) ) (v - vref)T(v - vref)

) vTv - 2vTvref + vref Tvref

) cTXTXc - 2cTXTvref + |vref|2

) cTSc- 2cTz + |vref|2 (37)

S≡ S(R) ) X(R)TX(R) (38)

z ≡ z(R) ) X(R)Tvref

copt(R) ) S(R)-1z(R) (39)

vTv ) |v|2 ) copt TScopt ) zTS- 1z ) zTcopt (40)

vTvref ) zTS-1XTvref ) zTS-1z ) vTv (41)

σ2(R;copt(R)) ) |vref|2 - z(R)TS(R)-1z(R) (42)

dσ2(R)

dRµ
M |Ropt

) 0 for all µ andM (43)

Figure 7. Outline of the computation of ofz ) X(R)Tvref.

g(νP) )
dσ2(R;copt)

dRν
P

) -2copt Tdz(R)

dRν
P

- zTdS(R)-1

dRν
P

z

) g(νP)
z + g(νP)

S (44)
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) 1 to arrive at the identity (S-1)′ ) -S-1S′S-1, allows the
required gradient contributions to be written

We assume that we have availablecopt at the time that the
gradients are to be evaluated, and we attempt to contract
together thecopt coefficients directly into the gradient vector
during the computation procedure. This reduces storage require-
ments compared to, for example, computing the matrixS′ itself
for all combinations ofν and P, and then subsequently
contracting those arrays with the vectorcopt in the computation
of gS.

We examine first the computation of thegz terms.

The computation of z(R)′ parallels the computation of
z(R) itself. As the walk is constructed using the tree-search
algorithm, the node and step number at each orbital level are
stored in the appropriate stack arrays. As the graph head is
reached for the walk corresponding tom, the xm

M product is
available

µ(j,m) is the arc that corresponds to the step from the node at
level j in walk m. The derivative of this coefficient is

Each xm
M product therefore contributes ton distinct gradient

entries.

The necessary products of the arc factors forj * i may be
computed efficiently from the partial product stack with only
two floating point multiplications per gradient contribution. The
overall effort scales approximately as the productnNcsfNR
Log4(n) (for large wave function expansions), which is only a
factor of n larger than the computation ofz itself. No sig-
nificant additional storage is required other than the result
gradient gz itself. This procedure is outlined in Figure 8.
As discussed previously, because the elements ofvref are
assumed to be independent quantities, it is difficult to imagine
how the effort proportional toNcsf could be eliminated from
this step.

We next consider the gradient contributionsgS. For this
purpose we use the general expression given in eq 27 to

compute an elementSMN; this expression reveals explicitly the
dependence on an individual arc factorRν

P. Differentiation of
SMN with respect to an arc factorRν

P results in the gradient
expression

The entire gradientgS may be computed by looping over all of
the arcs in the Shavitt graph and accumulating the above
contributions over all product term pairsM, N. Figure 9
summarizes this procedure assuming the contributions from a
singleM, N pair are constructed at a time. The construction of
γMN andγjMN scales asNrow for eachM, N pair. The computa-
tional effort forgS is proportional toNarc for eachM, N pair, so
the total effort scales as the productNarcNR(NR + 1). Storage
requirements include theγMN andγjMN arrays for all of theM,
N pairs of interest, along with the result gradientg. There is no
computational effort or storage requirements that depends
explicitly on Ncsf for these terms.

Derivatives with Respect to Essential Variables.In the
above discussion, we have assumed that the arc factorsR
are the fundamental independent variables of interest. For
optimization ofσ2 ) |v - vref|2 it is more convenient, robust,
and efficient to perform the optimization directly in terms of
the essential variablesæ defined in eqs 13. This requires
gradients with respect to these essential variables. For this
purpose we writeσ2(æ) ≡ σ2(R(æ)) and apply the chain rule to
give

gz ) - 2copt Tz(R)′

gS ) copt TS(R)′copt (45)

gVP
z ) -2∑

M)1

NR

cM
opt z(R) ′M

) -2∑
M)1

NR

∑
m)1

Ncsf

cM
opt Vm

ref xm
M(R)′ (46)

xm
M ) ∏

j)0

n-1

Rµ(j,m)
M (47)

dxm
M

dRν
P

) δMPδν,µ(i,m)∏
j(* i)

n-1

Rµ(j,m)
M for i ) Level(ν) (48)

gµ(i,m),M
z r -2cM

optVm
ref∏

j(* i)

n-1

Rµ(j,m)
M for i ) 0, ..., (n - 1)

(49)

Figure 8. Outline of the computation of thegz gradient contributions.

Figure 9. Outline of the computation ofgS gradient contributions.

gνP
S ) ∑

M,N

cM
optcN

optS′MN

) ∑
M,N

cM
optcN

opt γjTop(ν)
MN γBottom(ν)

MN d

dRν
P
(Rν

MRν
N)

) ∑
M,N

cM
optcN

opt γjTop(ν)
MN γBottom(ν)

MN (Rν
M δNP + Rν

N δMP) (50)
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The gradient elementsgµN computed using the procedures
discussed above may be transformed to produce the desired
gradient elementsg̃rM . In this manner, the above discussion
of the efficient function evaluation and gradient evaluation in
terms of the arc factorsR applies directly to the compu-
tation of functions and gradients in terms of the essential
variablesæ. According to the mapping in eq 13, theRµ(æ)
arc factors are analytic (i.e., continuous and smooth), so the
essential variablesæ may be considered as unconstrained
independent variables for the normalized wave function. For a
nodej with ηj > 1 lower arcs, the transformation elements are
given by

This transformation is very sparse and localized within single
product functions (δMN) and also to a single node at a time (δjj ′),
and from a practical perspective it takes very little effort.
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g̃rM ≡ dσ2(æ)

dær
M
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µN

dσ2(R)

dRµ
N

dRµ
N

dær
M
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µN

gµN

dRµ
N

dær
M

(51)
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